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Chromatin structure is a major regulator of
genome function and integrity
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Nucleosomes represent a fundamental form of genome regulation
by modulating DNA accessibility

AND by creating a regulatory platform containing “annotations” from:

cell type exercise
age history of social interactions
diet etc

Bludau et al. 2019
Luger et al. 2012; Chen et al. 2017;
Valencia and Kadoch 2019; Molina-Serrano et al. 2019.



This regulatory platform must be highly dynamic
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Chromatin remodelers: ATP-dependent enzymes that catalyze a wide
variety of transformations to their nucleosomal substrates



This regulatory platform must be highly dynamic
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Chromatin remodelers: ATP-dependent enzymes that catalyze a wide
variety of transformations to their nucleosomal substrates

Essential to all DNA-based processes (transcription, DNA damage repair, etc)

mutations to/mis-regulation of remodelers =
aging, cancer, neurodegeneration, developmental disorders, other diseases

Luger et al. 2012; Clapier and Cairns 2009; Zhou, Johnson, et al. 2016.



Remodelers are specialized for specific
IN VIVO processes
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Chromatin remodelers: ATP-dependent enzymes that catalyze a wide
variety of transformations to their nucleosomal substrates

10’s-100’s of remodelers, grouped into 4 major families

For example:
SWI/SNF family: primarily in cancer (Kadoch et al. 2013)

CHD family seems equally important in aging and cancer
(Pegoraro et al. 2009, Riedel et al. 2013, McCormick et al. 2015)

Remodelers are specialized for specific in vivo processes. But identifying
mechanistic and regulatory differences has been hard!



Focusing on a particular enzymatic reaction:
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Directional nucleosome sliding:
basic activity catalyzed by many
i remodelers

away from DNA ends
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Conventional assays are limited in what they
can tell us about this activity

Problem: Directional nucleosome sliding by very different enzymes often looks very
similar in standard biochemical assays!
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Hypothesis: there are differences here, we just can’t see them in these assays



Outline

INO8O
ATPase small, ~2 subunits; small ~1 subunit:
large, multi-subunit; transcriptional active gene body
DNA damage repair, TP ISWI' reguiation, higher- architecture
romoter architectures ase CHD1
P @ order structures ATPase
time‘ time ‘ time

@L_ elnmatl | | | | | | B A=

Zhou*, Johnson*, et al. 2018

(*equal contribution) Leonard and Narlikar 2015 McKnight et al. 2011

* A microscopy-based assay for generating time course data that gives a different
window on directional nucleosome sliding

e Quantifying fast, non-instantaneous transitions in noisy microscopy data with
sub-camera frame resolution: Slopey

* What Slopey tells us about INO80’s mechanism and regulation



Outline

INO80
ATPase

large, multi-subunit;
DNA damage repair,
promoter architectures

%' bt bl bl b

: Zhou*, Johnson*, et al. 2018
| (*equal contribution)
[ 9

|
1
|
1
1
|
|
1
1
|
1
- 1
time -
|
|
1
1
|
1
|
1
1
|
1

* A microscopy-based assay for generating time course data that gives a different
window on directional nucleosome sliding

e Quantifying fast, non-instantaneous transitions in noisy microscopy data with
sub-camera frame resolution: Slopey

* What Slopey tells us about INO80’s mechanism and regulation



Watching the sliding of individual nucleosomes
by single molecule FRET

“It is very easy to answer many of these fundamental biological questions; you just
look at the thing!” — Richard Feynman

acceptor channel donor channel

high FRET low FRET

LIAN

Red (Cy5) fluorescent ACCEPTOR dye
Green (Cy3) fluorescent DONOR dye
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Watching the sliding of individual nucleosomes
by single molecule FRET
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Traces: github.com/stephlj/Traces
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What does INO80-mediated sliding look like at
the single nucleosome level?
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What does INO80-mediated sliding look like at

the single nucleosome level?
+ATP
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Two reaction phases, with very different timescales.

What physical processes do these two phases of the reaction correspond to?

Zhou*, Johnson*, et al. 2018 (*equal contribution). 13



What’s happening in the two reaction phases?
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Bulge propagation or pause-translocation?

“Bulge” propagation? ATP-dependent translocation?
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Need a way to quantify the two phases!
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A conventional HMM can quantify the long
initial phase

Discrete-time HVM
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Hidden Markov model with Gaussian

1 emissions

| Fit using Gibbs sampling

Based on the pyhsmm Python package (github.com/mattjj/pyhsmm),
available as part of the Traces package at github.com/stephlj/Traces

Armache*, Gamarra*, Johnson et al. 2019,
Gamarra, Johnson, et al. 2018,
Zhou*, Johnson*, et al 2018 (*equal contribution).
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But how to quantify the rapid decrease in FRET?

It’s really fast! But not instantaneous.

+ATP

FRET

125 14
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The second phase is not instantaneous

Photobleaching (no INO80): INO80 second phase:
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Slopey: a continuous-time generative model with explicit camera modeling
github.com/stephlj/slopey (with Matt Johnson at Google Brain)
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Explicit camera modeling allows sub-frame
inferences

Model for the underlying (continuous) reality: But what we observe is:
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A generative model from continuous time
slopes to discrete time observations

Red,, is piecewise linear in time, with

(T t <t
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A generative model from continuous time
slopes to discrete time observations

2 Red . ete IS related to Red ., by taking into
g account the integration performed by the camera:
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Inference: the inverse problem
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We have a model that generates data, given parameters.

But we have data, and want parameters!

Bayesian inference:
Priors: t; ~ Exp(a)
(t2 — t1) ~ Uniform(0.14,4.5)
v ~ Exp(b)

Likelihood: camera model

Posterior distribution oc prior x likelihood



We can now make inferences about the slope
of the second phase of the reaction!

25
2L
x
1.5 G
=7 X e
3 it é
T
‘Z x % x XY\\)(
o) 39 g AL
£ % o Ve B i e eI T s e e B e S )
— x\/x
05F 4 % *
/
3 Y XX i
é/ p Mgl il — % _b_"_x):_x_z)o_( X %
Lk s et il o T e WEE
2R ,x)(')“ 2 o
xR * ’f(‘)(
% 3 *x e
0. L L s . ’
?20 125 130 135 140 145
Time (sec)

With this tool in hand: do the slopes of the “slopey bits” change with [ATP]?
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How does ATP concentration affect the rapid
decrease in FRET?
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The rate of the translocation phase is ATP
concentration dependent
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But the pause phase is also ATP-dependent!
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Is the initial pause a regulatory event?

If so, maybe it is sensitive to substrate cues that should regulate the reaction:
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Is the initial pause a regulatory event?

Neither the pause nor the translocation phase is sensitive to flanking DNA length.
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The initial pause is actually a regulatory event

But with a more complicated relationship to substrate cues than we thought!
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Zhou*, Johnson*, et al 2018 (*equal contribution).
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The initial pause is actually a regulatory event

But with a more complicated relationship to substrate cues than we thought!
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INO80’s mechanism differs significantly from
previously described sliding mechanisms
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Two distinct mechanisms = specialization for
particular in vivo roles?
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high FRET low FRET
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from microscopy assay
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= mechanistic insights into an enigmatic remodeler that were not obtainable by

conventional biochemistry
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Bayesian modeling of other microscopy-derived
time series data

Ph.D. work with Rob Phillips at Caltech:
dynamics of DNA looping in bacterial gene regulation
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DNA looping plays essential roles at many bacterial promoters,
but it’s another hard process to study biochemically

Johnson et al. 2014; Johnson et al. 2012;
Boedicker, Garcia, Johnson, and Phillips 2013;
Johnson*, Chen*, and Phillips 2013;

Chen*, Johnson*, and Phillips 2013 (*equal contribution (*equal contribution).
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Bayesian modeling of other microscopy-derived
time series data
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Johnson et al. 2014. -
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